skip to main content


Search for: All records

Creators/Authors contains: "Tremblay, L. Bruno"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Free-drift estimates of sea ice motion are necessary to produce a seamless observational record combining buoy and satellite-derived sea ice motionvectors. We develop a new parameterization for the free drift of sea ice based on wind forcing, wind turning angle, sea ice state variables(thickness and concentration), and estimates of the ocean currents. Given the fact that the spatial distribution of the wind–ice–ocean transfercoefficient has a similar structure to that of the spatial distribution of sea ice thickness, we take the standard free-drift equation and introducea wind–ice–ocean transfer coefficient that scales linearly with ice thickness. Results show a mean bias error of −0.5 cm s−1(low-speed bias) and a root-mean-square error of 5.1 cm s−1, considering daily buoy drift data as truth. This represents a 35 %reduction of the error on drift speed compared to the free-drift estimates used in the Polar Pathfinder dataset (Tschudi et al., 2019b). Thethickness-dependent transfer coefficient provides an improved seasonality and long-term trend of the sea ice drift speed, with a minimum (maximum)drift speed in May (October), compared to July (January) for the constant transfer coefficient parameterizations which simply follow the peak inmean surface wind stresses. Over the 1979–2019 period, the trend in sea ice drift in this new model is +0.45 cm s−1 per decadecompared with +0.39 cm s−1 per decade from the buoy observations, whereas there is essentially no trend in a free-driftparameterization with a constant transfer coefficient (−0.09 cm s−1 per decade) or the Polar Pathfinder free-drift input data(−0.01 cm s−1 per decade). The optimal wind turning angle obtained from a least-squares fitting is 25∘, resulting in a meanerror and a root-mean-square error of +3 and 42∘ on the direction of the drift, respectively. The ocean current estimates obtained from theminimization procedure resolve key large-scale features such as the Beaufort Gyre and Transpolar Drift Stream and are in good agreement with oceanstate estimates from the ECCO, GLORYS, and PIOMAS ice–ocean reanalyses, as well as geostrophic currents from dynamical ocean topography, with aroot-mean-square difference of 2.4, 2.9, 2.6, and 3.8 cm s−1, respectively. Finally, a repeat of the analysis on two sub-sections of thetime series (pre- and post-2000) clearly shows the acceleration of the Beaufort Gyre (particularly along the Alaskan coastline) and an expansion ofthe gyre in the post-2000s, concurrent with a thinning of the sea ice cover and the observed acceleration of the ice drift speed and oceancurrents. This new dataset is publicly available for complementing merged observation-based sea ice drift datasets that include satellite and buoydrift records. 
    more » « less
  2. Abstract

    Sea ice will persist longer in the Last Ice Area (LIA), north of Canada and Greenland, than elsewhere in the Arctic. We combine earth system model ensembles with a sea‐ice tracking utility (SITU) to explore sources of sea ice (the “ice shed”) to the LIA under two scenarios: continued high warming (HW) rates and low warming (LW) rates (mean global warming below ca. 2°C) through the 21st century. Until mid‐century, the two scenarios yield similar results: the primary ice source shifts from the Russian continental shelves to the central Arctic, mobility increases, and mean ice age in the LIA drops from about 7 years to less than one. After about 2050, sea ice stabilizes in the LW scenario, but continues to decline in the HW scenario until LIA sea ice is nearly entirely seasonal and locally formed. Sea ice pathways through the ice shed determine LIA ice conditions and transport of material, including biota, sediments, and pollutants (spilled oil and industrial or agricultural contaminants have been identified as potential hazards). This study demonstrates that global warming has a dramatic impact on the sources, pathways and ages of ice entering the LIA. Therefore, we suggest that maintaining ice quality and preserving ice‐obligate ecologies in the LIA, including the Tuvaijuittuq Marine Protected Area north of Nunavut, Canada, will require international governance. The SITU system used in this study is publicly available as an online utility to support researchers, policy analysts, and educators interested in past and future sea ice sources and trajectories.

     
    more » « less
  3. Abstract

    The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies to elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing.

     
    more » « less